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Abstract: A computation of the electron mass is found utilizing a generalized holographic approach

in terms of quantum electromagnetic vacuum fluctuations. The solution gives a clear insight into the

structure of the hydrogen Bohr atom, in terms of the electron cloud and its relationship to the proton

and the Planck scale vacuum fluctuations. Our electron mass solution is in agreement with

the measured Committee on Data of the International Council for Science (CODATA) 2014 value.

As a result, an elucidation of the source of the fine structure constant, the Rydberg constant, and the

proton-to-electron mass ratio is determined to be in terms of vacuum energy interacting at the Planck

scale. VC 2019 Physics Essays Publication. [http://dx.doi.org/10.4006/0836-1398-32.2.255]

R�esum�e: La masse de l’�electron est calcul�ee par l’utilisation d’une approche holographique

g�en�eralis�ee consid�erant les fluctuations du vide quantique �electromagn�etique. La solution obtenue

donne une image claire de la structure de l’atome d’hydrogène de Bohr constitu�e d’un nuage

�electronique li�e au proton en lien avec les fluctuations du vide �a l’�echelle de Planck. Notre solution

pour la masse de l’�electron est en accord avec la valeur CODATA (Comit�e des Donn�ees du

Conseil International pour la Science) 2014. Grâce �a ce r�esultat, nous avons pu �etablir l’origine de

la constante de structure fine, de la constante de Rydberg et du rapport masse protons/�electrons en

fonction de l’�energie du vide �a l’�echelle de Planck.
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I. INTRODUCTION

The electron mass is typically determined utilizing

penning traps, where measurements of the cyclotron fre-

quency for both an electron and a reference ion can be made.

The latest measured value given by the Committee on

Data of the International Council for Science (CODATA) is

9:10938356ð11Þ � 10�28g with a relative uncertainty of

1:2� 10�8.1 More recent indirect methods combine Penning

trap measurements of the Larmor-to-cyclotron frequency

ratio with a corresponding very accurate electron spin g-

factor calculation and find the more precise values of

0:000548579909067ð14Þð9Þð2Þ u (9:109389919� 10�28g)

and 0:000 548 579 909 065ð16Þ u (9:109389919� 10�28g),

respectively, with a relative uncertainty of order 10�11.2,3

These measurements are extremely precise, and yet a

satisfactory derivation from first principles remains to be

found, and thus, the nature of the electron remains a

mystery.

The standard definition for the mass of the electron is

therefore generally given in terms of the Rydberg constant

R1,

me ¼
2R1h

ca2
¼ 9:10938356ð11Þ � 10�28g; (1)

where h is Planck’s constant and a is the fine structure

constant.

However, although in agreement with the measured

CODATA 2014 value, this standard form does not reveal the

nature or structure of the electron. As noted by Wilczek, “An
electron’s structure is revealed only when one supplies
enough energy […] at least 1 MeV, which corresponds to the
unearthly temperature of 1010 kelvin” below which it

“appears” pointlike and structureless.4

Although the position and momentum can only be

defined in terms of a probability cloud, the quantum behavior

of the electron is successfully calculated by the current stan-

dard model. Yet the most precise prediction, being that of the

g-factor,5,6 still requires the inclusion of a contribution from

quantum vacuum fluctuations7 to account for the observed

deviation known as the anomalous magnetic moment.8

Quantum corrections are also expected for an electric

field—but as yet no such field has been detected. Based on

charge-parity (CP) violating components, the standard model

assumes an upper limit on the electron electric dipole

moment (EDM) of de � 10�38q cm,9 which is smaller than

current experimental sensitivities. However, recent experi-

ments confirm a nonzero EDM with a much higher upper

limit, e.g., Refs. 10 and 11, and more recently Ref. 12 who

find de < 10:5� 10�28q cm, de < 6:05� 10�25q cm and

de < 1:1� 10�29q cm, respectively, suggesting the standard

model is incomplete and there must be other sources of CP

violation. Higher EDMs are predicted by extensions to the

standard model, e.g., supersymmetric models, which predict

de > 10�26q cm (Ref. 13) and are in agreement with the

results from Ref. 11 but not Refs. 10 and 12. In either case, it

is clear that current models, the standard model and exten-

sions such as supersymmetric models, are incomplete.b)amira@hiup.org
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Defining the fundamental characteristics of particles

from first principles, and without free parameters, is of

great importance as not only will it provide information

about the structure of subatomic particles but also the

source of mass and the nature of spacetime itself. Success-

ful predictions allow us to confirm and improve upon exist-

ing models.

In the standard approach, quantum chromodynamics

(QCD), hadron masses are determined by considering not

only the quark masses but also and most importantly the

dynamics of the system. Due to the nonlinear nature of the

strong force, exact calculations of nucleons and their constit-

uent parts are extremely difficult and thus rely on numerical

techniques where probability amplitudes are assigned to

each Feynman diagram and Monte Carlo simulations (or

other similar iterative methods) determine the best fit. How-

ever, despite the development of sophisticated numerical

techniques and ever faster super computers, QCD calcula-

tions have been unable to successfully predict the mass of

the proton.

In an effort to make a reasonable prediction, Durr

et al.14 utilized a computational technique called lattice

gauge theory. In the lower energy regime (i.e., lower than

proton energy) where the interactions are strong, and the

coupling parameter is large,15 a nonperturbative approach

is required where a discrete set of spacetime points

rather than a spacetime continuum allows for improved cal-

culations. In the model used by Durr et al.,14 only three

input parameters were required: the light (up and down)

quark mass; the strange quark mass; and the gauge cou-

pling parameter, g. These calculations cannot distinguish

between a proton or a neutron and thus yield a general

value for a nucleon of mN ¼ 936 MeV=c2 6 25=622 ¼
1:67� 10�24 6 0:0446g.1 This value is in good agreement

with the general mass of a nucleon but, based on the

time-intensive methods, is not yet as good as expected.

Furthermore, there is no analytical solution to lattice

QCD (LQCD) or a good understanding of the nature

of confinement. There is no doubt that QCD is successful

at calculating these measured parameters. However, as

noted by Wilczek,16 there are limitations to the

purely mathematical approach of QCD, and he thus

suggests, along with the asymptotic method, a more sim-

plistic approach which looks at the underlying physical

model.

Starting with the premise that an electron cloud can be

considered as an “electron” coherent field of information,

we look at the microstructure of the electron system from a

generalized holographic approach. In Section II, we will

give an overview of this generalized holographic approach,

which in previous work successfully computes the mass

of the proton17 and a precise charge radius of the

proton within an 1r agreement with the latest muonic

measurements,18 relative to a 7r variance in the standard

approach.19

Utilizing this approach, we find an electron mass solu-

tion in terms of the surface-to-volume entropy measured as

Planck oscillator information bits. This value is in agreement

with the measured CODATA 2014 value.

II. THE HOLOGRAPHIC PRINCIPLE AND THE PROTON
MASS

In previous works,17,18,20 a quantized solution to gravity

is given in terms of Planck Spherical Units (PSUs) in a gen-

eralized holographic approach. This section gives a brief

overview of the history and development of the holographic

principle that led to the generalization offered in Refs. 17,

18, and 20.

The holographic principle has its origins in the work of

Bohm21,22 who suggested that every region contains a total

“structure” enfolded within it. Bohm equated this idea with

the Universe, which he referred to as a hologram based on its

analogy with optical holography. Bekenstein later proposed,

similarly, that entropy in a given region of space is limited

by the area of its boundary.

Bekenstein’s idea began as a solution to the violation of

the second law of thermodynamics for black hole physics,

which suggests that a black hole has entropy. When the

second law of thermodynamics is considered in terms

of black hole physics, the entropy of the black hole

exterior is found to decrease. To remove such a violation,

Bekenstein23–25 proposed that the entropy S or information

contained in a given region of space, such as a black hole, is

proportional to its surface horizon area A expressed in units

of Planck area

S / A

‘2
(2)

and obeys a generalized second law in which the black hole

entropy plus the common entropy of the black-hole exterior

never decreases. This relation between black hole physics

and thermodynamics was also made between the first law of

black hole mechanics and the first law of thermodynamics.

The first law of black hole mechanics

dM ¼ j
8pG

dAþ XdJ þ UdQ (3)

gives the mass M in terms of the surface gravity j, the sur-

face area A, the angular velocity X, the angular momentum

J, the electrostatic potential U, and the electric charge Q.

(Note that for a Schwarzschild black hole, the angular

momentum and electric charge are set to be zero.)

Whereas the first law of thermodynamics

dE ¼ TdS� PdV (4)

equates the energy in terms of the temperature T, the entropy

S, the pressure P, and the volume V.

The quantities, A and j of the black hole, have a close

analogy with entropy S and temperature T, respectively, thus

by equating the first terms on the right-hand side of each

equation [Eqs. (3) and (4)], Bardeen et al.26 were able to

show that

j
8pG

dA ¼ TdS! S ¼ jA

8pGT
: (5)

In 1974, Hawking27,28 predicted the spontaneous emis-

sion of black hole thermal radiation, arising from steady
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conversion of quantum vacuum fluctuations into pairs of par-

ticles, with a temperature

TH ¼
�h

2pkBsj
; (6)

where kB is the Boltzmann constant and sj is the characteris-

tic lifetime for the light pulse, emitted by the in falling mat-

ter, redshifted to zero (and is given as the time it takes light

to travel a distance 2rS, where rS is the Schwarzschild

radius).

Substituting the above definition for Hawking tempera-

ture [Eq. (6)] and including a factor c2=kB, the entropy can

be given in dimensionless units as

S ¼ jA2pkBc

8pG�hj
c2

kB
¼ Ac3

4G�h
¼ A

4‘2
: (7)

The Bekenstein-Hawking entropy of a black hole

expressed in units of Planck area is thus given as

S ¼ A

4‘2
; (8)

where the Planck area, ‘2, is taken as one unit of entropy and

A is the surface area of the black hole.

Bekenstein29 further argued for the existence of a univer-

sal upper bound for the entropy of an arbitrary system with

maximal radius r,

S � 2prE

�hc
(9)

and found that this maximal bound is equivalent to the

Bekenstein-Hawking entropy for a black hole (assuming

E ¼ mc2).

This idea of a maximal entropy, defined by the Beken-

stein bound, along with unitarity arguments, eventually led

to a holographic principle as described by ‘t Hooft30–32 and

later further developed by Susskind.33 Through studying the

quantum mechanical features of black holes and the third

law of thermodynamics relating entropy to the total number

of degrees of freedom, ‘t Hooft showed that the entropy

directly counts the number of Boolean degrees of freedom

and concluded that the relevant degrees of freedom of a

black hole must not exceed 1=4 the total surface area, and

thus, the maximal entropy for a black hole is A=4. That is “a

region with boundary of area A is fully described by no more

than A=4 degrees of freedom, or about 1 bit of information

per Planck area.”

However, as noted by Bousso32 for all systems larger

than the Planck scale, the volume will exceed the surface

area (e.g., for a proton, the volume is larger than the area by

a factor of 1020). Thus, the result obtained when only the sur-

face is considered, is at odds with the much larger number of

degrees of freedom estimated from the local field theory.

The question thus arises whether the Bekenstein-Hawking

entropy counts all states inside a black hole or only the states

distinguishable to the exterior observer. This question is put

into focus when considering “Wheelers bags of gold” which

refers to classical solutions to Einstein’s equations that allow

values of the black hole entropy larger than those allowed by

an area law.34,35

The nature of holography, the holographic principle, and

the maximal entropy of a black hole is thus further explored

by Haramein who proposes a generalized holographic

approach in terms of both the surface and volume entropy of

a spherical system.17,18 We will give a brief outline of this

approach here.

To begin with, it is important to note that the holo-

graphic bit of information is not defined as ‘2, as previously

suggested,23,25,30,31,33,36 and is instead defined as an oscillat-

ing PSU, given as

PSU ¼ 4

3
pr3

‘ ; (10)

where r‘ ¼ ‘=2 and ‘ is the Planck length.

These PSUs, or Planck voxels, tile along the area of a

spherical surface horizon, producing a holographic relation-

ship with the interior information mass-energy density (see

Fig. 1).

In this generalized holographic approach, it is therefore

suggested that the information/entropy of a spherical surface

horizon should be calculated in spherical bits and thus

defines the surface information/entropy in terms of PSUs,

such that,

g ¼ A

pr2
‘

; (11)

where the Planck area, taken as one unit of information/

entropy, is the equatorial disk of a PSU, pr2
‘ and A is the sur-

face area of a spherical system. We note that in this defini-

tion, the entropy is slightly greater (�5 times) than that set

by the Bekenstein Bound [Eq. (9)], and the proportionality

constant is taken to be unity (instead of 1=4 as in the

Bekenstein-Hawking entropy). It has been previously sug-

gested that the quantum entropy of a black hole may not

exactly equal A=4.35,37 To differentiate between the models,

FIG. 1. (Color online) Schematic to illustrate the PSUs packed within a

spherical volume.
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the information/entropy S encoded on the surface boundary

in Haramein’s model is termed g � S.

Following this definition for surface information g, the

information/entropy within a volume of space is similarly

defined in terms of PSUs as

R ¼ V
4

3
pr3

‘

¼ r3

r3
‘

; (12)

where V is the volume of the spherical entity and r is its

radius.

In previous work,17,18 following the relationship

between mass and surface area [Eq. (3)] with energy and

entropy [Eq. (4)], it was demonstrated that the holographic

relationship between the transfer energy potential of the sur-

face information and the volume information equates to the

gravitational mass of the system. It was thus found that for

any black hole of Schwarzschild radius rS, the mass mS can

be given as

mS ¼
R

g
m‘; (13)

where m‘ is the Planck mass, g is the number of PSUs on the

spherical surface horizon, and R is the number of PSUs

within the spherical volume. Hence, a holographic gravita-

tional mass equivalence to the Schwarzschild solution is

obtained in terms of a discrete granular structure of

spacetime at the Planck scale. It should be noted that this

view of the interior structure of the black hole in terms of

PSUs, is supported by the concept of black hole molecules

and their relevant number densities as proposed by Miao and

Xu38 and Wei and Lui.39 As well, the relationship between

the interior structure in terms of “voxels” and the connecting

horizon pixels is discussed in the work of Nicolini.40

Furthermore, this inequality in energy potential between

the surface information and the volume information, where

R > g for all r > 2‘ suggests that both, the gravitational cur-

vature potential is the result of an asymmetry in the informa-

tion structure of spacetime, and the volume information is

not only the result of the information/entropy surface bound

of the local environment but may also be nonlocal, due to

wormhole interactions as those proposed by the ER¼EPR

conjecture, where black hole interiors are connected through

microwormhole interactions.41

Moreover, we find that the only radius at which the holo-

graphic ratio equals one (i.e., R ¼ g), where all the volume

information is encoded on the surface, is the condition

rS‘ ¼
2Gm‘

c2
¼ 2‘; (14)

where rS‘ is the Schwarzschild radius of a black hole with

mass m ¼ m‘.

In this case, the surface entropy g and the volume

entropy R are thus calculated to be

g‘ ¼
4pr2

S‘

pr2
‘

¼ 4pð2‘Þ2

p ‘=2ð Þ2
¼ 64; (15)

R‘ ¼
r3

S‘

r3
‘

¼ ð2‘Þ
3

‘=2ð Þ3
¼ 64: (16)

This results in a holographic ratio of R‘=g‘ ¼ 1 yielding

m‘ ¼ ðR‘=g‘Þm‘ such that a balanced state of equilibrium

between the volume-to-surface information transfer potential

is achieved, supporting the conjecture that due to its ultimate

stability, the Planck entity is the fundamental granular kernel

structure of spacetime forming a crystal-like structured lat-

tice at the very fine scale of the quantum vacuum.42,43

Additionally, it is important to note that there is a factor

of 2 or 1=2 between the Planck length and the Schwarzschild

radius of a Planck mass black hole, and although its physical

meaning has yet to be completely understood, it has been

related to geometric considerations of motion, particle

physics and cosmology, and commonly occurs in the most

fundamental equations of physics.44 However, the origin of

this factor may be the result of the holographic surface-to-

volume consideration of the fundamental geometric cluster-

ing of the structure of spacetime at the Planck scale, where

one Planck mini black hole is a cluster bundle of Planck

spherical vacuum oscillators.

Of course, these considerations on the granular structure

of space lead to the exploration of the clustering of the struc-

ture of spacetime at the nucleonic scale, where it was found

that a precise value for the mass mp and charge radius rp of a

proton can be given as

mp ¼ 2
g
R

m‘ ¼ 2/m‘; (17)

rp ¼ 4‘
m‘

mp
¼ 0:841236ð28Þ � 10�13 cm; (18)

where / is defined as a fundamental holographic ratio.

Significantly, this value is within an 1r agreement with the

latest muonic measurements of the charge radius of the pro-

ton,17,18 relative to a 7r variance in the standard approach.19

The radius of an oscillating electrostatic field such as a

proton defines an effective charge boundary in that region of

space—a “charge radius.” The standard approach thus relies

on indirect measurements of the energy interaction at the

charge surface boundary between the electron and the

proton when measuring the Lamb shift quantum vacuum

oscillations.45–49 This is typically done utilizing electron

proton scattering and/or hydrogen spectroscopy methods.

Both these methods have consistently yielded similar results,

where the latest 2014 CODATA value, rp ¼ 0:8751ð61Þ�
10�13 cm, is based on a least-squares approximation between

both methods.

III. DETERMINING THE MASS OF THE ELECTRON

In Section II, we described a generalized holographic

approach which derives the proton mass from the granular

Planck scale structure of spacetime in terms of a surface-to-

volume information transfer potential.

The question is can this approach be extended to the

electron? The first step in answering this question is to con-

sider the spatial extent of the electron and the volume of

258 Physics Essays 32, 2 (2019)



information that it encloses. However, the spatial extent of

the electron has not been conclusively defined. As we

described in Section II, the generalized holographic approach

sees the mass as emerging from the granular Planck scale

structure of spacetime in terms of a surface-to-volume infor-

mation transfer potential /, which decreases with the

increasing radius. Similarly, instead of thinking about the

electron as a separate system, the electron could be thought

of as a cloud of potential energy spatially extending from the

proton out to the radius where the volume encloses the elec-

tron cloud of a hydrogen Bohr atom. Thus, in an attempt to

deepen our understanding, we consider the holographic ratio

relationship as we extend the radius of the comoving Planck

particles to r > rp.

Equation (17) therefore becomes

mr ¼ b/rm‘; (19)

where mr is the mass of any spherical system with radius r, b
is a geometric parameter, and /r is the holographic surface-

to-volume ratio in terms of PSUs for any spherical system

with radius r.

With b ¼ 1=2a (refer to Section II on the factor of 2 in

physics), we find a mass in precise agreement with the exper-

imental mass of the electron when the holographic ratio

reaches r ¼ a0, where a0 is the Bohr radius.

The solution for the mass of the electron can thus be

given as

me ¼
1

2a
/em‘; (20)

where

/e ¼
ge

Re
; ge ¼

4pa2
0

pr2
‘

and Re ¼
4=3pa3

0

4=3pr3
‘

¼ a3
0

r3
‘

:

With this solution, we find a mass of me ¼
9:10938ð30Þ � 10�28g which compared to the measured

CODATA 2014 value is accurate within 1r and with a preci-

sion of 10�5.1 The precision, and thus accuracy, of our solu-

tion is restricted by the value of the Planck units which are

dependent on experimental values given for the gravitational

constant, G. However, when the absolute value for the holo-

graphic mass solution for the electron is considered, the

mass is comparable with the experimental CODATA 2014

value to a greater degree of accuracy <1r and a precision of

10�8 with a confidence level of 99:9 _9%.

The presence of a in Eq. (20) reveals that both the charge

and velocity are important contributing factors to the mass

solution where, for the case of the electron at least, the holo-

graphic mass solution can be formulated in terms of both

velocity and charge relationships

me ¼
1

2a
/em‘ ¼

1

2

v‘
ve

/em‘ ¼
1

2

q2
‘

q2
e

/em‘; (21)

where a ¼ v‘=ve and a ¼ q2=q2
‘ .

This solution, as well as being significantly accurate,

gives us insight into the physical and mechanical dynamics

of the granular Planck scale vacuum structure of spacetime

and its role in the source of angular momentum, mass, and

charge. The definition clearly demonstrates that the differen-

tial angular velocities of the collective coherent behavior of

Planck information bits (PSUs) determines specific scale

boundary conditions and mass-energy relationships, analo-

gous to the collective behavior of particles in a rotating

fluid50 or superfluid plasma.51

This solution as well resolves the difficulty associated

with hierarchy problems (we will address the electron-to-

proton mass ratio below). The current quantum understand-

ing resolves the hierarchy bare mass problem for the elec-

tron mass through the consideration of antimatter where

positron and electron pairs pop in and out of the vacuum.

These virtual particles smear out the charge over a greater

radius such that the bare mass energy is canceled by the

electrostatic potential, where the greater the radius the

lesser the need for fine tuning. In the solution presented

here, the electron is extended to a maximal radius of a0

and we are able to demonstrate that the mass of the elec-

tron is a function of the Planck vacuum oscillators surface-

to-volume holographic relationship, over this region of

spacetime. The hierarchy bare mass problem is thus

resolved by considering Planck vacuum oscillators acting

coherently extending over a region of space equivalent to

the Bohr hydrogen atom.

In much the same way that the electron analogy is pro-

posed to resolve the Higgs hierarchy problem, with the inclu-

sion of virtual supersymmetric particles, we could also

assume that the surface-to-volume holographic relationship

in the Higgs region of space would solve for the mass of the

Higgs, where the Higgs radius would be of the order,

r‘ < rHiggs < rp.

The hierarchy problem associated with the mass of the

electron and the mass of the proton can also be understood in

terms of the surface-to-volume holographic ratio over their

respective commoving regions of space, where the greater

the radius the smaller the mass. The mass is thus a direct

function of the commoving behavior of the Planck vacuum,

where the spin and mass decrease as a function of the

increasing radius.

IV. EXTENSION OF THE HOLOGRAPHIC SOLUTION
FOR RADII LESS THAN THE BOHR RADIUS

When we further extend this solution for the n¼ 1 state,

we find that at radii r < a0, the holographic mass solution

increases as shown in Fig. 2. This application of the holo-

graphic solution gives us the following equation

1

2a
/rðrÞm‘ ¼ Nme; (22)

where /rðrÞ is the holographic ratio as a function of the

radius r for r < a0, and N is an integer.

With this solution, we could recognize N as being the

atomic number Z, where for progressively smaller fractions

of a0, we find an interesting proportional relationship

between the holographic mass and the mass of the electron

(see Fig. 2).
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From this holographic mass solution, we are thus able to

calculate the total mass of the electrons for all known ele-

ments, without the need for adding the atomic mass number,

Z. We instead find that the atomic mass number Z could be a

natural consequence of the holographic solution. As a result,

a picture develops in which the structure of the Bohr atom

and the charge and mass of both the proton and the electron

are consequences of spin dynamics in the comoving behavior

of the Planck scale granular structure of spacetime. This sug-

gests that the confinement for the electron is a result of the

quantum gravitational force exerted by the dynamics of the

vacuum at the Planck scale. The electrostatic force can thus

be accounted for in the same way the strong force is

accounted for in the case of the proton,17,18 where in both

cases, the proton and the electron confinement are the result

of a quantum force exerted through the granular Planck scale

structure of spacetime.

V. DERIVING THE RYDBERG CONSTANT, THE FINE
STRUCTURE CONSTANT, AND THE PROTON TO
ELECTRON MASS RATIO

A. The Rydberg constant

The Rydberg constant is considered to be one of the

most well-determined physical constants, with an accuracy

of 7 parts to 1012 and is thus used to constrain the other phys-

ical constants.1,6 However, as the same spectroscopic experi-

ments are used to determine both the charge radius of the

proton and the Rydberg constant, the recent muonic meas-

urements of the charge radius of the proton implies that the

Rydberg constant would change by 4� 5r.52–54 This is

known as the proton radius puzzle. The standard formula for

the Rydberg constant is given as

R1 ¼
mea2c

2h
; (23)

so any change in the experimentally determined value for the

proton radius and thus the Rydberg constant will have a sig-

nificant effect on the constraints defining the relationships

between me, a, c, and h.

In order to understand and subsequently infer any dis-

crepancies between experimental and theoretical values, it is

important to determine the underlying physical mechanism

under which the Rydberg constant R1 emerges. The holo-

graphic mass solution offers such a geometric mechanism

providing a physical description and insight into how R1
emerges.

The standard formula for the mass of the electron [Eq.

(1)] can be reduced to

me ¼
2R1h

ca2
¼ 4p‘m‘R1

a2
: (24)

Equating this, Eq. (24), with the geometric solution,

Eq. (20) gives

me ¼
4p‘m‘R1

a2
¼ 1

2a
/em‘;

and thus,

R1 ¼
a/e

8p‘
¼ 1:097373ð36Þ � 105 cm�1: (25)

This definition offers a geometric solution for the Ryd-

berg constant in agreement with the experimentally deter-

mined CODATA 2014 value.

As shown above, the holographic mass solution yields a

correct value for both the charge radius of the proton, in

agreement with the muonic radius measurement17,18 and the

Rydberg constant independently, resolving the proton radius

puzzle from first principles.

B. The fine structure constant and the
proton-to-electron mass ratio

This approach can as well be extended to derive the fine

structure constant, a and the proton to electron mass ratio, l,

in terms of /e.

If we equate the new geometric solution, Eq. (25), with

the standard definition, Eq. (23), we get

R1 ¼
mea2c

2h
¼ a/e

8p‘
;

and thus,

a ¼ /eh

8pr‘mec
¼ /eke

8pr‘
¼ 7:29735ð34Þ � 10�3; (26)

which is in agreement with that of the CODATA 2014 value.

The ratio of the proton mass to the electron mass, l, can

also be given in terms of the geometric solution, Eqs. (17)

and (20),

FIG. 2. (Color online) Graph to show the holographic mass solution as a

function of radius. Note that the holographic mass is equal to me at the corre-

sponding radii of a0/N. For example, the holographic mass: equals the mass

of one electron at a radius of the hydrogen atom in its n¼ 1 state; equals the

mass of two electrons at a radius of the helium atom in its n¼ 1 state; equals

the mass of three electrons at a radius of the lithium atom in its n¼ 1 state,

and so on. Note that this relationship is only shown on the graph for the first

three elements but continues for all known elements.
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l ¼ mp

me
¼ 2/m‘

/em‘=2a
¼ 4a

/
/e

¼ 4a
a0

rp
¼ 1836:152ð86Þ:

(27)

A similar relationship, me=mp � 10a2, was identified by

Carr and Rees in 1979 [Eq. (45) of Ref. 55] which they state

is from a coincidence in nuclear physics and note that if the

relation was not satisfied, elements vital to life would not

exist.55

VI. SUMMARY

A new derivation for the mass of the electron is presented

from first principles, where the mass is defined in terms of the

holographic surface-to-volume ratio and the relationship of

the electric charge at the Planck scale to that at the electron

scale. It should be emphasized that the generalized holo-

graphic approach is a new approach to quantum gravity based

on geometrical considerations alone. It therefore does not uti-

lize the established mathematics of quantum mechanics and

general relativity to achieve its objectives. Interestingly and

nontrivially, it is able to give a quantum analogy for the mass

of the black hole—in that its mass is determined from discrete

voxels of spacetime—and as well extends to the nucleon

scale, where the mass of the proton and the electron can simi-

larly be defined.

This new derivation for the electron extends the holo-

graphic mass solution to the hydrogen Bohr atom and for all

known elements, defining the atomic structure and charge as

a consequence of the electromagnetic fluctuation of the

Planck scale. Furthermore, the atomic number, Z, emerges

as a natural consequence of this geometric approach. The

confinement for both the proton and the electron repulsive

electrostatic force are now accounted for by a quantum grav-

itational force exerted by the granular Planck scale structure

of spacetime. We conclude that this new approach offers an

accurate value for the mass of the electron. As well, contrary

to the standard calculation [as shown in Eq. (1)], it offers a

physical understanding to the structure of spacetime at the

quantum scale, yielding significant insights into the forma-

tion and source of the material world. Our results support our

belief that such insights have significant value and should be

developed further.
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